
Mohammed S. answered 03/30/19
A person who enjoys teaching others
Hello,
Identities to keep in mind:
sin2x+cos2x=1 and cos2x=(1+cos(2x))/2
Using the first identity, we have sin2x=1-cos2x.
So we have that cos4x*sin2x=cos4x(1-cos2x)
Expanding, we have cos4x-cos6x.
Since cos2x=(1+cos(2x))/2, this implies cos4x=((1+cos(2x))/2)^2 and cos6x=((1+cos(2x))/2)^3.
Expanding each one, we have
cos4x-cos6x=1/4(1+2cos(2x)+cos2(2x))-1/8(1+3cos(2x)+3cos2(2x)+cos3(2x)).
Simplifying we get
cos4x-cos6x=1/8+1/8(cos(2x)-cos2(2x)-cos3(2x)).
cos2(2x)=1/2(1+cos(4x)) and cos3(2x)=cos2(2x)*cos(2x)=1/2(1+cos(4x))*cos(2x)=1/2(cos(2x)+cos(4x)*cos(2x))
Substituting, we get
cos4x-cos6x=1/8+1/8(cos(2x)-1/2(1+cos(4x))-1/2(cos(2x)+cos(4x)*cos(2x)))
Cleaning it up, we get
cos4x*sin2x=1/16+cos(2x)/16-cos(4x)/16-cos(4x)cos(2x)/16.
Will R.
Thank you03/30/19