Using the Pythagorean Identity sin^2 t + cos^2 t = 1 , find cos t given:
sin t = (2√2)/3
0 ≤ t < π/2
STEP 1: FIND sin^2 t
sin^2 t = ( (2√2)/3)^2 = (2√2)/3∙(2√2)/3 = (4∙2)/9 = 8/9
STEP 2: SUBSTITUTE VALUE FOR sin^2 t AND SOLVE
8/9 + cos^2 t =1
cos^2 t = 1-8/9
cos^2 t = 1/9
√(cos^2 t )=√(1/9)
cos t = ±1/3
Since 0 ≤ t < π/2 , cos t = 1/3
ANSWER CHOICE: A