The first results are from the Pythagorean identity cos2x + sin2x=1. cosx=±√(1-sin2x), and sin x =±√(1-cos2x)
For u in the second quadrant, sin u=7/25, cos u <0 and equal to -√(1-(7/25)2)=-24/25. Or you can just remember the 7, 24, 25 right triangle.
For v in the second quadrant sin v >0 and equal to 5/13, if you remember the 5, 12, 13 right triangle or, as above sin v = √(1-(12/13)2) = 5/13
NOW: sin(u+v)=sin u cos v + cos u sin v =(7/25)(-12/13)+(-24/25)(5/13)=-204/325