
Dalia S.
asked 02/22/14write the following in the polar form
a)πi
r=
θ=
b)-2√2- 5i
r=
θ=
c) (1-i)(-√(3)+i))
r=
θ=
d)(√(2)-5i))2
r=
θ=
e)(-5+√(2i))/(5+3i)
r=
θ=
f) -√7(1+i)/ √(3) +i
r=
θ=
2 Answers By Expert Tutors

Steve S. answered 02/22/14
Tutoring in Precalculus, Trig, and Differential Calculus
http://www.wyzant.com/resources/answers/27705/
Here’s my answer, again:
[I would like other tutors to critique it for errors, though.]
Write the following in the polar form re^(iθ), -pi < 0 ≤ pi
a) pi i = re^(iθ), where:
r = pi
θ = pi/2
b) -2√2 - 5i = re^(iθ), where:
r = √(8+25) = √(33)
θ = -pi + arctan((5√(2))/4)
c) (1-i)(-√(3)+i)) = (√(2) e^(-i pi/4)) (2 e^(i 5pi/6))
= 2√(2) e^(i 7pi/12)
r = 2√(2)
θ = 7pi/12
d)(√(2)-5i))^2 = ( √(27) e^(-i arctan( (5√(2))/2) ) ) )^2
= 27 e^(-2i arctan( (5√(2))/2) ) )
r = 27
θ = -2 arctan( (5√(2))/2) )
e)(-5+√(2i))/(5+3i)
2i = 2e^(i pi/2)
√(2i) = √(2) e^(i pi/4) = 1 + i
-5+√(2i) = -4 + i = √(17) e^(i (pi + arctan(-1/4)))
5+3i = √(34) e^(i arctan(3/5))
(-5+√(2i))/(5+3i) = ( √(17) e^(i (pi + arctan(-1/4))) )/( √(34) e^(i arctan(3/5)) )
= (√(2))/2 e^(i ( (pi + arctan(-1/4))) - (arctan(3/5)) ) )
r = (√(2))/2
θ = pi + arctan(-1/4) - arctan(3/5) = pi + arctan(7/23)
f) -√7(1+i)/(√(3)+i)
- √7(1+i) = - √(7) √(2) e^(i pi/4)
√(3)+i = 2 e^(i arctan( (√(3))/3 ) )
-√7(1+i)/(√(3)+i) = - √(14) e^(i pi/4) / ( 2 e^(i arctan( (√(3))/3 ) ) )
r = (√(14))/2
θ = pi/4 - arctan( (√(3))/3 )
Dalia S.
02/22/14

Nathan C. answered 02/22/14
Math and Science (K through College)
r = sqrt((-1)^2 + (+1)^2) = sqrt(1 + 1) = sqrt(2) -> r = sqrt(2)
θ = arctan((+1)/(-1)) = π*3/4
r = sqrt((-1)^2 + (-1)^2) = sqrt(1 + 1) = sqrt(2) -> r = sqrt(2)
θ = arctan((-1)/(-1)) = -π*3/4
r = sqrt((+1)^2 + (-1)^2) = sqrt(1 + 1) = sqrt(2) -> r = sqrt(2)
θ = arctan((-1)/(+1)) = -π/4

Steve S.
02/22/14

Steve S.
02/22/14

Nathan C.
02/22/14
Still looking for help? Get the right answer, fast.
Get a free answer to a quick problem.
Most questions answered within 4 hours.
OR
Choose an expert and meet online. No packages or subscriptions, pay only for the time you need.
Nathan C.
02/22/14