Search
Ask a question
10 0

State and prove redundant law of boolean algebra.

Statement and proof
Tutors, please sign in to answer this question.

1 Answer

Redundancy laws are as follows:
i) A+ĀB = A+B
ii) A.(Ā+B) = AB
Proof:
i) A+ĀB = (A+Ā)(A+B) [since A+BC = (A+B)(A+C){Distributive law}]
            = 1 * (A + B) [since A + Ā = 1{Complement}]
            = A + B
ii) A*(Ā + B) = A.Ā+AB
                   = 0+AB [since AĀ =0{Complement}]
                   = AB