
Kalee K.
asked 02/09/14verify the identity (cosx-cscx)(cosx+1)=-sinx
2 Answers By Expert Tutors

Kenneth G. answered 02/09/14
Experienced Tutor of Mathematics and Statistics

Steve S. answered 02/09/14
Tutoring in Precalculus, Trig, and Differential Calculus
(cos(x)sin(x)-1)(cos(x)+1) = -sin^2(x)
(cos(x)sin(x)-1)(cos(x)+1) = -1 + cos^2(x)
(cos(x)sin(x)-1)(cos(x)+1) = (cos(x)+1)(cos(x)-1)
(cos(x)sin(x)-1)(cos(x)+1) - (cos(x)+1)(cos(x)-1) = 0
(cos(x)+1)((cos(x)sin(x)-1)-(cos(x)-1)) = 0
(cos(x)+1)(cos(x)sin(x)-1-cos(x)+1) = 0
(cos(x)+1)(cos(x)sin(x)-cos(x)) = 0
(cos(x))(cos(x)+1)(sin(x)-1) = 0
cos(x) = 0 => x = 90°+n360°, 270°+n360°, n integer;
and cos(x) = -1 => x = 180°+n360°, n integer, but these angles cause original equation to be undefined (see above);
and sin(x) = 1 => x = 90°+n360°, n integer
So solutions are:
x = 90°+n360° and 270°+n360°, n integer.

Kenneth G.
02/09/14

Steve S.
02/09/14

Kenneth G.
02/10/14

Steve S.
02/10/14
Still looking for help? Get the right answer, fast.
Get a free answer to a quick problem.
Most questions answered within 4 hours.
OR
Choose an expert and meet online. No packages or subscriptions, pay only for the time you need.
Michael F.
(√2/2-2/√2)(√2/2+1)=1/2+√2/2-1-√2=-1/2-√2/2≠-√2/2
It seems that this may not be an identity.
02/09/14