
Robert J. answered 12/11/13
Tutor
4.6
(13)
Certified High School AP Calculus and Physics Teacher
1) cos(3θ)
= cos(2θ+θ)
= cos2θ cosθ - sin2θ sinθ
= (cos^2 θ - sin^2θ)cosθ - 2sin^2θ cosθ
= cos^3θ - 3cosθ sin^2θ
cos4θ
= cos^2(2θ) - sin^2(2θ)
= (cos^2θ-sin^2θ)^2 - 4sin^2θ cos^2θ
= cos^4θ - 6cos^2θ sin^2θ + sin^4θ <==You had a typo here.)
You can follow this way to get it done. But it is lot simpler if you use De Moivre's theorem.
cosnθ + i sinnθ = (cosθ + i sinθ)^n
Expand and compare real parts:
cosnθ
= cos^nθ - nC2cos^(n-2)θsin^2θ + nC4cos^(n-4)θsin^4θ -...+
= ∑{i = 0, n}nCi cos^(n-i) θ sin^i θ cos(0.5(n-i)pi)