
Sanhita M. answered 02/03/16
Tutor
4.7
(11)
Mathematics and Geology
Given f(x)=|6-x|
the zero(s) of the function means the roots of the functions or the value(s) of x for which the function equals to Zero(0).
therefore we must determine x to satisfy f(x)=|6-x| to answer (a)
Thus, |6-x|=0
=> +(6-x)=0 OR -(6-x)=0
=>6-x=0 OR -6+x=0
=>6-x-6=0-6 OR -6+x+6=0+6
=> -x=-6 OR x=6
=>-x/(-1)=-6/(-1) OR x=6
=>x=6 OR x=6
Thus the given function has only root x=6 for f(x)=+(6-x) and f(x)=-(6-x)
Your solution gives only a typo at -x/-x=-6/-1 and did not solve for |6-x|=0 Yet your answers are correct.
To test the roots for (b)
We need to check, f(-x)=|6-(-x)|=|6+x|
Thus, |6+x|=0
=> +(6+x)=0 OR -(6+x)=0
=>6+x=0 OR -6-x=0
=>6+x-6=0-6 OR -6-x+6=0+6
=> x=-6 OR -x=6
=>x=-6 OR -x/(-1)=6/(-1)
=>x=-6 OR x=-6
=> +(6+x)=0 OR -(6+x)=0
=>6+x=0 OR -6-x=0
=>6+x-6=0-6 OR -6-x+6=0+6
=> x=-6 OR -x=6
=>x=-6 OR -x/(-1)=6/(-1)
=>x=-6 OR x=-6
Thus the given function has only root x=-6 for f(-x)=+(6-[-x]) and f(-x)=-(6-[-x])
and f(x)≠f(-x) hence the given function is not even.
Then We need to check, -f(x)=-|6-x|
Thus
-|6-x|=0
=> -[+(6-x)]=0 OR -[-(6-x)]=0
=>-(6-x)=0 OR (6-x)=0
=>-6+x=0 OR 6-x=0
=>-6+x+6=0+6 OR 6-x-6=0-6
=>x=6 OR -x=-6
=>x=6 OR -x/(-1)=-6/(-1)
=>x=6 OR x=6
Thus the given function has only root x=6 for -f(x)=-|6-x|
But f(-x) ≠f(-x) so the given function is not Odd
Therefore for (b) the correct answer is option D. f is neither even nor odd.