Statement. |. Reason
1. AB = AC. 1. Given
2. Angle B = 2. When 2 sides of a triangle are congruent, the angles opposite them are congruent
Angle C
3. AE bisects 3. Given
angle A, BF bi-
sects angle B
4. Angle EBF 4. Definition of an angle bisector
Equals angle
EBC, Angle ECF
Equals angle FCB
5. Angle EBC = 5. Halves of equals are equals
Angle FCB
6. BC = BC. 6. Identity property
7. Triangle EBC= 7. ASA = ASA
Triangle FCB
8. BF = EC 8. Corresponding parts of congruent triangles are congruent
9. AF =AE. 9. Subtraction Postulate
10. Angle AFE =. 10. Same as reason 2
Angle AEF
11. Angle A =. 11. Identity property
Angle A
12. Angle B +. 12. Subtraction Postulate.....Alltriangles interior angles add up to 180
Angle C = Angle
AEF + Angle AFE
13. Angle B = 13. Transitive property
Angle AFE
14. FE || BC. 14. If 2 parallel lines are cut by a transversal, then the corresponding angles are congruent
15. Angle FEB = 15. If 2 parallel lines are cut by a transversal, then the alternate interior angles are equal
Angle CBE
16. Angle FEB=. 16. Transitive Property
Angle EBF