Jon P. answered 07/13/15
Tutor
5.0
(173)
Knowledgeable Math, Science, SAT, ACT tutor - Harvard honors grad
To differentiate, you have to use the chain rule several times:
Dx g(x) = [ 1 / ln (ln (f(x))) ] * Dx ln (ln (f(x))) =
[ 1 / ln (ln (f(x))) ] * [ 1 / ln (f(x)) ] * Dx ln (f(x)) =
[ 1 / ln (ln (f(x))) ] * [ 1 / ln (f(x)) ] * [ 1 / f(x) ] [ Dx f(x) ] =
[ 1 / ln (ln (f(x))) ] * [ 1 / ln (f(x)) ] * [ 1 / f(x) ] [ f'(x) ]
Now plug in the values for f(4) and f'(4)...
[ 1 / ln (ln (f(x))) ] * [ 1 / ln (f(x)) ] * [ 1 / f(x) ] [ f'(x) ] =
[ 1 / ln (ln (A)) ] * [ 1 / ln (A) ] * [ 1 / A ] [ B ]
That's about it, but you can make it look at little simpler...
B
g'(4) = --------------------------
ln (ln (A)) * ln (A) * A