1. Identify the Rotation Angle
The general form of the quadratic equation is:
Ax2+Bxy+Cy2+Dx+Ey+F=0Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0Ax2+Bxy+Cy2+Dx+Ey+F=0
In this case, A=25A = 25A=25, B=−120B = -120B=−120, C=144C = 144C=144, D=−156D = -156D=−156, E=−65E = -65E=−65, and F=0F = 0F=0.
To eliminate the xyxyxy-term, use the rotation formula. The angle ϕ\phiϕ of rotation is given by:
tan(2ϕ)=BA−C\tan(2\phi) = \frac{B}{A - C}tan(2ϕ)=A−CB
Substitute A=25A = 25A=25, B=−120B = -120B=−120, and C=144C = 144C=144:
tan(2ϕ)=−12025−144=−120−119=120119\tan(2\phi) = \frac{-120}{25 - 144} = \frac{-120}{-119} = \frac{120}{119}tan(2ϕ)=25−144−120=−119−120=119120
Now, find ϕ\phiϕ by solving:
2ϕ=arctan(120119)2\phi = \arctan\left(\frac{120}{119}\right)2ϕ=arctan(119120) ϕ=12arctan(120119)\phi = \frac{1}{2} \arctan\left(\frac{120}{119}\right)ϕ=21arctan(119120)
2. Calculate the Rotation Angle
Using a calculator or software to find ϕ\phiϕ:
ϕ=12arctan(120119)≈0.785 radians (or 45∘)\phi = \frac{1}{2} \arctan\left(\frac{120}{119}\right) \approx 0.785 \text{ radians} \text{ (or } 45^\circ \text{)}ϕ=21arctan(119120)≈0.785 radians (or 45∘)
3. Rotation Transformation
The rotation of axes formulas are:
X=xcosϕ−ysinϕY=xsinϕ+ycosϕ\begin{aligned} X &= x \cos \phi - y \sin \phi \\ Y &= x \sin \phi + y \cos \phi \end{aligned}XY=xcosϕ−ysinϕ=xsinϕ+ycosϕ
For ϕ=45∘\phi = 45^\circϕ=45∘ (or π4\frac{\pi}{4}4π):
cos(45∘)=12sin(45∘)=12\begin{aligned} \cos(45^\circ) &= \frac{1}{\sqrt{2}} \\ \sin(45^\circ) &= \frac{1}{\sqrt{2}} \end{aligned}cos(45∘)sin(45∘)=21=21
Substitute into the rotation equations:
X=12(x−y)Y=12(x+y)\begin{aligned} X &= \frac{1}{\sqrt{2}} (x - y) \\ Y &= \frac{1}{\sqrt{2}} (x + y) \end{aligned}XY=21(x−y)=21(x+y)
4. Substitute into the Original Equation
Express xxx and yyy in terms of XXX and YYY:
x=12(X+Y)y=12(X−Y)\begin{aligned} x &= \frac{1}{\sqrt{2}} (X + Y) \\ y &= \frac{1}{\sqrt{2}} (X - Y) \end{aligned}xy=21(X+Y)=21(X−Y)