
Dayv O. answered 07/13/24
Caring Super Enthusiastic Knowledgeable Calculus Tutor
saying Q is angle from x axis for the tangent
and θ is angle from x axis for the position vector
want Q-θ
know tanQ=dy/dx
know tanθ=y/x
tan(Q-θ)=[tanQ-tanθ]/[/1+(tanQ)(tanθ)]
have tan(Q-θ)=[(dy/dx)+y/x]/[1+((dy/dx)(y/x)]
=[xy'-y]/[x+yy'],,,y'=dy/dx
introducing r(θ)
dy/dx=[dy/dθ]/[dx/dθ]
dy/dθ=r'sinθ+rcosθ,,,r'=dr/dθ
dx/dθ=r'cosθ-rsinθ
x=rcosθ
y=rsinθ
now
tan(Q-θ)=[rcosθ(r'sinθ+rcosθ)+-rsinθ(r'cosθ-rsinθ)]/[rcosθ(r'cosθ-rsinθ)+rsinθ(r'sinθ+rcosθ)]
tan(Q-θ)=r/r' ,,,,,,r'=dr/dθ
example,,have curve y=x2
in polar coordinates,
r=tanθsecθ
r'=(tan2θ)secθ+sec3θ
r/r'=tanθ/[tan2θ+sec2θ]
at (2,4)
Q=tan-1(dy/dx)=tan-14,,, θ=tan-1(y/x)=tan-12
tan(Q-θ)=[4-2]/[1+2*4]=2/9
r=2sec(tan-12)=2√5 or r=√(22+42)=2√5
θ=tan-12
r'=4sec(tan-12)+sec3(tan-12)=4√5+5√5
tan(Q-θ)=r/r'=2/9
Q-θ=12.61 degrees at (2,4),,,(2√5,tan-12)