
Dayv O. answered 03/30/23
Attentive Reliable Knowledgeable Math Tutor
the answer must be 17(1/4)e(.12)i=(17(1/4))(cos(.12)+isin(.12))
since [17(1/4)e(.12)i]2=(√17)e(.24)i=(√17)(cos.24+isin.24)=4+i
proceeding with
q=(4+i)(1/2)
same as q=e(1/2)ln(4+i)
same as q=e(1/2)[ln√17+i(arctan(1/4)+2πk)]
since if z=x+iy then ln(z)=ln(|z|(ei(arctan(y/x)+2pik))=ln|z|+i(arctan(y/x)+2pik)
now q=(17(1/4))ei(.12+πk) ,,,set k=0 for smallest positive angle