f(x) = ax4 + bx3 – 4x2 + 2cx + 14
First derivative:
f’(x) = 4ax3 + 3bx2 – 8x + 2c
Second derivative:
f’’(x) = 12ax2 + 6bx – 8
Given:
f(-2) = a(-2)4 + b(-2)3 – 4(-2)2 + 2c(-2) + 14 = 2
16a - 8b – 16 – 4c + 14 = 2
16a -8b -4c =4 (Eqn. 1)
f’(-2) = 4a(-2)3 + 3b(-2)2 – 8(-2) + 2c = 16
-32a + 12b + 16 + 2c = 16
-32a + 12b +2c = 0 (Eqn. 2)
f’’(x) = 12a(-2)2 + 6b(-2) – 8 = -8
48a – 12b – 8 = -8
48a – 12b = 0 (Eqn. 3)
Solving for b (Eqn. 3):
b = 4a
Substitute this value in Eqn. 2:
-32a + 12(4a) + 2c = 0
16a + 2c = 0
c = -8a
Substitute these values in Eqn. 1:
16a -8(4a) -4(-8a) =4
16a = 4
a=1/4
b = 4a = 1
c = -8a = -2
Original function is therefore:
f(x) = (¼)x4 + x3 – 4x2 -4x + 14