Hi Katelyn!
Addition & Subtraction identities
Sin(A-B) = SinACosB - CosASinB
Sin(A+B) = SinACosB +CosASinB
Sin(A-B) x Sin(A+B) =
(SinACosB-CosASinB)(SinACosB+CosASinB)
Use FOIL
Sin2ACos2B+SinASinBCosACosB -
SinASinBCosACosB-Cos2ASin2B
Middle terms drop out
(1) Sin2ACos2B - Cos2ASin2B
Sin2A + Cos2A = 1 pythagorean identities
Sin2B + Cos2B = 1
Cos2B=(1 - Sin2B), Cos2A=(1 - Sin2A)
Substitute into equation (1)
Sin2A(1-Sin2B) - (1-Sin2A)Sin2B
Multiply through parentheses...
Sin2A - Sin2ASin2B - (Sin2B - Sin2ASin2B)
Sin2A - Sin2ASin2B - Sin2B + Sin2ASin2B
The longer two terms cancel out and you are
left with what you are trying to prove.
Sin2A - Sin2B