For g(f(x)) to be defined, x must be in the domain of f [so that f(x) is defined], and f(x) must be in the domain of g [so that g(f(x)) makes sense].
Domain f = all real numbers except 3 (so x≠ 3)
Domain g = all real numbers except 4 (so f(x) ≠ 4)
x ≠ 3 and 1/(x-3) ≠ 4
x ≠ 3 and x - 3 ≠ 1/4
x ≠ 3 and x ≠ 3.25
domain g(f(x)) = (-∞, 3) ∪ (3, 3.25) ∪ (3.25, ∞)
g(f(x)) = g(1/(x-3)) = 1 = 1 = x - 3
1 - 4 1 - 4(x - 3) 13 - 4x
x - 3 x - 3