Grigoriy S. answered 11/23/21
AP Physics / Math Expert Teacher With 40 Years of Proven Success
Problem 1
a) In order to find the kinetic energy of the pendulum at equilibrium position, we will find at first its velocity at this point.
We can apply the law of conservation of mechanical energy. Let’s select the zero-energy level - the level at the bottom. Then at point 1, where the pendulum is at angle 40 degrees from vertical, it has only potential energy U = mgh, where h – height against 0s level of energy, m – mass of the pendulum and g = 9.8 m/s2 is free fall acceleration. At point 2, at the bottom, the pendulum has only kinetic energy K = ½ mv2, here v – the speed of the pendulum at the point.
Now using the law of conservation of energy, we can write
mgh = ½ mv2
Height h could be found from geometric point of view and it is h = l – lcosθ,
where l - length of pendulum, θ = 40° or
h = l(1 – cosθ)
after substitution we have
v = √2gl(1- cosθ)
(Please be careful! Near g is l = length of the pendulum, inside the parentheses just number one – 1)
Putting all values into the formula, we have v = √2 x 9.8 m/s2 x 1.2 m ( 1 – cos 40°)
Please do the rest of math on your own.
Now put the value of speed v into the formula for kinetic energy K = ½ mv2 and you are done.
Part (b) you can do in similar way.
Problem 2
We know that m = 120 kg
v1 = 25 m/s
v2 = 5 m/s
d = 30 m
a) to find the work we will use the work-energy theorem: Work done by the force is equal to change in kinetic energy of the body.
W = ΔK
Change in kinetic energy ΔK = K2 - K1 = 1/2 m (v22 - v12). Please find the numeric value. Note that the change in energy is negative. It means that we have dissipation of energy, some of the energy will be converted to internal (heat) energy.
Force could be expressed from the formula for work.
W = Fd.
Bert, I hope now you grasped the problem. Good luck!