
Yefim S. answered 11/16/21
Math Tutor with Experience
x2y + y2x = 6
a)d/dx(x2y + y2x) = d/dx(6); 2xy + x2y' + y2 + 2xyy' = 0; y'(x2 + 2xy) = - (2xy + y2);
y' = - y(2x + y)/[x(x + 2y)]
b) At x = 2 y = 1 and y' = - 1( 4 + 1)/[2(2 + 2)] = - 5/8.
So, tangent line: y = 1 - 5/8(x - 2); y = - 5/8x + 9/4;
c) y' = 0; y(2x + y) = 0; y = 0 don't satisfy given line equation (0 = 6 contradiction).So, 2x + y = 0; y = - 2x;
- 2x3 + 4x3 = 6; x3 = 3; x = 31/3 and y = -·2 31/3
- At point ( 31/3, - 2·31/3) graph has horizontal tangent line