
Steve S. answered 01/24/14
Tutor
5
(3)
Tutoring in Precalculus, Trig, and Differential Calculus
y = f(x); f(0) = 3
dy/dx=(x^2)(y-1)
Separate variables and integrate:
∫ (1/(y-1)) dy = ∫ x^2 dx + C
ln|y-1| = (1/3) x^3 + C
y(0) = 3:
ln|3-1| = 0 + C
C = ln(2)
ln|y-1| = (1/3) x^3 + ln(2), y ≠ 1
e^(ln|y-1|) = e^((1/3) x^3 + ln(2))
|y-1| = (e^((1/3) x^3))(e^(ln(2)))
|y-1| = 2(e^((x^3)/3))
y-1 = ±2(e^((x^3)/3))
y = 1 ± 2(e^((x^3)/3))
check:
dy/dx = 0 ± 2( (e^((x^3)/3)) (x^2) )
dy/dx = (±2(e^((x^3)/3))) (x^2)
dy/dx = (y - 1) (x^2) √