Joel L. answered 11/09/21
MS Mathematics coursework with 20+ Years of Teaching Experience
Let t = arcsin x
Using ln and e, we can obtain the value of exponential function as:
xarcsin(x) = xt = et•ln(x)
d(xt)/dt = d(et•ln(x) )/dt
= et•ln(x) • (ln(x) + (t / x)•dx/dt )
Put back the value of t in terms of x:
= xarcsin(x)•( ln(x) + (arcsin(x) / x) • dx / d(arcsin (x))
Using the derivative of arcsin (x): d(arcsin (x)) = dx / (1-x2)1/2
= xarcsin(x)• (ln(x) + (arcsin(x) / x) • dx / (dx /(1-x2)1/2))
= xarcsin(x)• (ln(x) + (arcsin(x) / x) • (1-x2)1/2)