ax=g( sin θ - μk cos θ)
(ax)/(g)=sin θ - μk cos θ
(ax)/(g) - sin θ = - μk cos θ
(ax)/(gcosθ) - (sin θ)/(cosθ) = - μk
(ax)/(gcosθ) - tan θ = - μk
l = ( ax t ^ 2 ) / 2
2I = ax * t^2
ax = (2I)/t^2
(ax)/(gcosθ) - tan θ = - μk
((2I)/t^2)/(gcosθ) - tan θ = - μk
((2I)/t^2)/(gcosθ) = - μk + tan θ
μk + ((2I)/(t^2)(gcosθ) = tan θ
μk = tan θ - (2I)/((t^2)(gcosθ))
If anything is incorrect or you would like further explanation don't hesitate to message me or reply.