Arpan S. answered 06/28/21
Science Expert(Mathematics, Physics, Chemistry)
Step 1
The given function:
y'-y=6x
The initial conditions are,
y(0)=0, y(2)=0
The general solution of the above function is,
y(x)=A cos x + B sin x+6x
Using Green's function for the above solution:
G(x, s)=A(s) cos x + B(s) sin x+6x - equation 1
That is,
Step 2
Apply initial conditions to the above solution,
At y(0)=0;
G(0,s)=A(s) cos 0 + B(s) sin 0+6(0)=0
[cos 0=1; sin 0=0]
G(0,s)=A(s) (1)=0
A(s)=0
G(0,s)= B(s) sin x
At y(2)=0;
G(2,s)=A(s) cos (2) + B(s) sin (2)+6(2)=0
[A(s)=0]
G(2,s)=B(s) (0.0349)=-12
B(s)=-343.8395
G(2,s)=-343.8395 sin x+6x
Substitute A(s) and B(s) value in equation 1,
G(x, s)=-343.8395 sin x+6x
Then the solution is,
y(x)=G(x, s)=-343.8395 sin x+6x