
Yefim S. answered 05/27/21
Math Tutor with Experience
y = mx; (x - 6)2 + (y + 2)2 = 20; 2(x - 6) + 2(y + 2)y' = 0
x - 6 + (mx + 2)m = 0;
x + m2x = 6 - 2m; x = (6 - 2m)/(1 + m2); ((6 - 2m)/(1 + m2) - 6)2 + (m(6 - 2m)/(1 + m2) + 2)2 = 20;
(-2m - 6m2)2 + (6m - 2m2 + 2 + 2m2)2 = 20(1 + m2)2;
4m2 + 24m3 + 36m4 + 36m2 + 24m + 4 = 20 + 40m2 + 20m4; 16m4 + 24m3 + 24m - 16 = 0;
2m4 + 3m3 + 3m - 2 = 0; 2(m + 1)(m - 1)(m2 + 1) + 3m(m2 + 1) = 0. Reducing by m2 + 1 ≠ 0;
2m2 + 3m - 2 = 0; (2m - 1)(m + 2) = 0; m1 = - 2 and m2 = 1/2
So, m1·m2 = -1 so this tangent lines arev perpendicular

Paul M.
05/27/21