Podi O.
asked 05/08/21Rationalizing the Denominator
Hello I couldn't get how my professor solved this question. Thanks for your help in advance!
**Given**
$$
\omega'=\omega\sqrt{\frac{m_{e f f}}{m_{e f f}+m}}
$$
**Question**
$$
\frac{\Delta \omega}{\omega} = \ ?
$$
\
**Answer of my professor**
$$
\frac{\Delta \omega}{\omega} {=} \frac{m}{2m_{eff}}
$$
\
**My attempt but couldn't reach to his result.**
$$
\frac{\Delta \omega}{\omega} = \frac{\omega' -\omega}{\omega}
$$
$$
=\frac{\omega \sqrt{\frac{m_{e f f}}{m_{e f f}+m}}-\omega}{\omega}=\frac{\not \omega\left[\sqrt{\frac{m_{e f f}}{m_{e f f}+m}}-1\right]}{\not\omega}
$$
$$
=\frac{\sqrt{m_{e f f}}}{\sqrt{m_{e f f}+m}}-1=\frac{\sqrt{m_{e f f}}-\sqrt{m_{e f f}+m}}{\sqrt{m_{e f f}+m}}
$$
$$
=\left(\frac{\sqrt{m_{e f f}}-\sqrt{m_{e f f}+m}}{\sqrt{m_{e f f}+m}}\right) \left( \frac{\sqrt{m_{e f f}}+\sqrt{m_{e f f}+m}}{\sqrt{m_{e f f}}+\sqrt{m_{e f f}+m}} \right)
$$
$$
=-\frac{m}{\sqrt{m_{e f f}+m}\left(\sqrt{m_{e f f}}+\sqrt{m_{e f f}+m}\right)}
$$
\
**How my professor found? **
$$
\frac{\Delta \omega}{\omega} \stackrel{?}{=} \frac{m}{2m_{eff}}
$$
More
1 Expert Answer
There's code.
Re-post in text or post an image with the question written.
Still looking for help? Get the right answer, fast.
Ask a question for free
Get a free answer to a quick problem.
Most questions answered within 4 hours.
OR
Find an Online Tutor Now
Choose an expert and meet online. No packages or subscriptions, pay only for the time you need.
Mark M.
Please repost using the tool box with standard notation.05/08/21