Podi O.

asked • 05/08/21

Rationalizing the Denominator

Hello I couldn't get how my professor solved this question. Thanks for your help in advance!

**Given**
$$
\omega'=\omega\sqrt{\frac{m_{e f f}}{m_{e f f}+m}}
$$

**Question**
$$
\frac{\Delta \omega}{\omega} = \ ?
$$

\
**Answer of my professor**
$$
\frac{\Delta \omega}{\omega} {=} \frac{m}{2m_{eff}}
$$

\
**My attempt but couldn't reach to his result.**
$$
\frac{\Delta \omega}{\omega} = \frac{\omega' -\omega}{\omega}
$$
$$
=\frac{\omega \sqrt{\frac{m_{e f f}}{m_{e f f}+m}}-\omega}{\omega}=\frac{\not \omega\left[\sqrt{\frac{m_{e f f}}{m_{e f f}+m}}-1\right]}{\not\omega}
$$
$$
=\frac{\sqrt{m_{e f f}}}{\sqrt{m_{e f f}+m}}-1=\frac{\sqrt{m_{e f f}}-\sqrt{m_{e f f}+m}}{\sqrt{m_{e f f}+m}}
$$
$$
=\left(\frac{\sqrt{m_{e f f}}-\sqrt{m_{e f f}+m}}{\sqrt{m_{e f f}+m}}\right) \left( \frac{\sqrt{m_{e f f}}+\sqrt{m_{e f f}+m}}{\sqrt{m_{e f f}}+\sqrt{m_{e f f}+m}} \right)
$$
$$
=-\frac{m}{\sqrt{m_{e f f}+m}\left(\sqrt{m_{e f f}}+\sqrt{m_{e f f}+m}\right)}
$$
\
**How my professor found? **
$$
\frac{\Delta \omega}{\omega} \stackrel{?}{=} \frac{m}{2m_{eff}}
$$

Mark M.

Please repost using the tool box with standard notation.
Report

05/08/21

1 Expert Answer

By:

Still looking for help? Get the right answer, fast.

Ask a question for free

Get a free answer to a quick problem.
Most questions answered within 4 hours.

OR

Find an Online Tutor Now

Choose an expert and meet online. No packages or subscriptions, pay only for the time you need.