
Inha C. answered 03/06/21
Math tutor with 10+ TA classes and 3+ years of tutoring experience
The category is double angle identity, so I assume your question was originally written like this:
-------------------------------------------------------
Find sin(2θ), cos(2θ), and tan(2θ) when...
A) cos(θ) = -1/4 and π/2 < θ < π
B) sec(θ) = 5/2 and sin(θ) > 0
C) sin(θ) =3/5 and tan(θ) < 0.
--------------------------------------------------------
Double angle identities:
sin(2θ) = 2sin(θ)cos(θ)
cos(2θ) = cos2(θ) - sin2(θ)
tan(2θ) : I'd rather use the fact that tangent is sine over cosine.
Useful: sin2(θ) + cos2(θ) = 1
Now I'll start.
A) cos(θ) = -1/4 and π/2 < θ < π
From sin2(θ) + cos2(θ) = 1, sin2(θ) = 15/16, so sin(θ) = ±√15/4.
Because π/2 < θ < π, sin(θ) must be positive. Therefore sin(θ) = √15/4.
sin(2θ) = 2sin(θ)cos(θ) = 2*(√15/4)*(-1/4) = -√15/8
cos(2θ) = cos2(θ) - sin2(θ) = 1/16 - 15/16 = -7/8
tan(2θ) = sin(2θ) / cos(2θ) = √15/7
B) sec(θ) = 5/2 and sin(θ) > 0
sec(θ) = 5/2 means cos(θ) = 2/5.
From sin2(θ) + cos2(θ) = 1, sin2(θ) = 21/25, so sin(θ) = ±√21/5. Well, sin(θ) > 0, so it is √21/5.
sin(2θ) = 2sin(θ)cos(θ) = 2*(√√21/5)*(2/5) = 4√21/25
cos(2θ) = cos2(θ) - sin2(θ) = 4/25 - 21/25 = -17/25
tan(2θ) = sin(2θ) / cos(2θ) = -4√21/17
C) sin(θ) =3/5 and tan(θ) < 0.
From sin2(θ) + cos2(θ) = 1, cos2(θ) = 16/25, so cos(θ) = ±4/5.
If sin(θ) > 0 and tan(θ) < 0, then cos(θ) < 0. Therefore cos(θ) = -4/5.
sin(2θ) = 2sin(θ)cos(θ) = 2*(3/5)*(-4/5) = -24/25
cos(2θ) = cos2(θ) - sin2(θ) = 16/25 - 9/25 = 7/25
tan(2θ) = sin(2θ) / cos(2θ) = -24/7
Hope this helps!