Viviana C.

asked • 12/06/20

precal question

Find and prove an inequality relating 100n and n3.

Since 100n

 and n3

 for n = 1, 2, 3, . . . 9, 10, 11

 are 110, 200, 300, . . . 900, 1000, 1100

 and 1, 8, 37, . . . 729, 1000, 1331

 respectively, our conjecture is that 100n ≤ n3,

 for all n ≥  .

 Let P(n)

 denote the statement that 100n ≤ n3.



P(10)

 is the statement that 100     ≤     3
 

,

 which is true.


Assume that P(k)

 is true. Thus, our induction hypothesis is 100k  ? 

 for some k ≥  .



We want to use this to show that P(k + 1)

 is true. Now,

100(k + 1) = 100k +  ≤ k + k2 ≤ k3 + 3k2 + 3k + 1 =

 


 

  3
 

.



Thus, P(k + 1)

 follows from P(k),

 and this completes the induction step. Having proven the above steps, we conclude by the Principle of Mathematical Induction that P(n)

 is true.


2 Answers By Expert Tutors

By:

Tom K. answered • 12/06/20

Tutor
4.9 (95)

Knowledgeable and Friendly Math and Statistics Tutor

Stanton D. answered • 12/06/20

Tutor
4.6 (42)

Tutor to Pique Your Sciences Interest

Still looking for help? Get the right answer, fast.

Ask a question for free

Get a free answer to a quick problem.
Most questions answered within 4 hours.

OR

Find an Online Tutor Now

Choose an expert and meet online. No packages or subscriptions, pay only for the time you need.