
Patrick B. answered 11/23/20
Math and computer tutor/teacher
USE PARENTHESIS!!!!
the actual formula is...
7 + 7^2 + 7^3 + .... + 7^(n) = [7^(n+1)-7]/6
n=1: [7^(1+1)-7 ] / 6 = [7^2-7]/6
= (49-7)/6 = 42/6 = 7 = 7^1
n=2: 7+7^2 = 7+49=56
vs
[ 7^3 - 7]/6 = 3(43-7)/6 = 336/6 = 56
induction hypothesis:
7 + 7^2 + 7^3 + .... + 7^(n) = [7^(n+1)-7]/6
Then
7 + 7^2 + 7^3 + .... + 7^(n) + 7^(n+1) =
[7^(n+1)-7]/6 + 7^(n+1) = <-- substitutes induction hypothesis
[7^(n+1)-7]/6 + 6*7^(n+1)/6 = <-- common denominator
[7^(n+1)-7 + 6*7*(n+1)]/6 = <-- combines numerators
[7*7^(n+1) - 7]/6 <--- combines like terms
[ 7^(n+2)-7]/6 <-- property of exponents