Given 6 cos (6x) + 5 = 4 cos (6x) + 6, gather variable terms on the left side and simplify
6 cos (6x) - 4 cos (6x) = 6 - 5
2 cos (6x) = 1
Divide both sides by 2
cos (6x) = 1/2
In the first quadrant (0 < θ < pi/2), the only angle with cosine = 1/2 is pi/3 (that is, 60°).
Therefore:
if 6x = pi/3,
then x = pi/18 (or x = 3.333°).
Checking:
6 cos (6x) + 5 = 4 cos (6x) + 6
6 cos (6 * pi/18) + 5 = 4 cos (6 * pi/18) + 6
6 cos (pi/3) + 5 = 4 cos (pi/3) + 6
6 (1/2) + 5 = 4 (1/2) + 6
3 + 5 = 2 + 6
8 = 8