
Kenley T. answered 11/03/20
Kenley T. Math Tutor
So in this case, we rewrite cos4x into the addition formula identity
cos(4x) = cos(2x +2x)
cos(2x+2x) = cos(2x)cos(2x)-sin(2x)sin(2x)
we then use our trigonometric identities with the double angle formula to tell us what cos(2x) and sin(2x) is
cos(4x) = (cos2(x)-sin2(x))*(cos2(x)-sin2(x)) - (2sin(x)cos(x))*(2sin(x)cos(x))
we know from pythagorean's theorem that sin2(x) = 1-cos2(x)
so we substitute our sin2(x) first
cos(4x) = (cos2(x)-1+cos2(x))*(cos2(x)-1+cos2(x)) - 4sin2(x)cos2(x)
do the same substitution again and simplify even more
cos(4x) = (2cos2(x)-1)*(2cos2(x)-1) - 4(1-cos2(x))*cos2(x)
cos(4x) = 4cos4(x) - 4cos2(x) + 1 - 4cos2(x) + 4cos4(x)
cos(4x) = 8cos4(x) - 8cos2(x) + 1
Let me know if you have any questions on the steps.