Mitiku D. answered 02/13/15
Tutor
4.9
(205)
Electrical Engineer, Patient and Objective
Adnan, use a different kind of Euler's formula's application sin(x)=1/2i(eix-e-ix) and cos(x)=1/2(eix+e-ix)
and you should get (e-ix+1)/(eix+1)=e-ix
[2/2 + (eix-e-ix)/2i + i((eix+e-ix)/2]/[2/2 + (eix-e-ix)/2i - i((eix+e-ix)/2] = ei∏/2e-ix = e-ix
([2 + i(-eix-e-ix) + i(eix+e-ix)]/2)/([2 + i(eix-e-ix) - i(eix+e-ix)]/2)=e-ix
[(2 + 2e-ix)/2]/[(2 - 2eix)/2] = e-ix
(1 + e-ix)/(1+eix)=e-ix
(1+e-jx)/(1-ejx) = ej(∏/2-x)
Euler's formula ejx=cosx+jsinx
multiply both sides by the denominator
1+ejx=ej(∏/2-x)-ejxej(∏/2-x)
= ej(∏/2-x)-ej(x+∏/2-x)
= .......... - ej∏/2 ej∏/2 = cos∏/2+jsin∏/2=1
1+ejx = ej(∏/2-x)-1
I hope this helps but I am working on it as I write this
ej(∏/2-x)= cos(∏/2-x) + jsin(∏/2-x)
cos(∏/2)cos(x)+sin(∏/2)sin(x) + j[sin(∏/2)cos(x)-cos(∏/2)sin(x)]
(1)cos(x)+ (0)sin(x) + j[ (0)cos(x)- (1)sin(x)] cos(∏/2)=1, sin(∏/2)=0
<=> cos(x) - jsin(x)