¬[q∧ ( p → ¬ q ) ] → p ≡ ( p ⋁ q )
Note that your precise way of writing some of this will depend on your textbook/professor's choices.
1 | ¬[q∧ ( p → ¬ q ) ] → p....................ACP (want p v q)
2 | [¬q v ¬(p → ¬ q)] → p.....................DM 1
3 | [¬q v ¬(¬p v ¬ q)] → p.....................MI 2
4 | [¬q v (¬¬p ∧ ¬¬ q)] → p................DM 3
5 | [¬q v (¬¬p ∧ ¬¬ q)] → p.................DM 3
6 | [¬q v (p ∧ q)] → p...........................DN 6
7 || ¬q....................................................ACP (want p)
8 || ¬q v (p ∧ q)....................................Add 7
9 || p.......................................................MP 6, 8
10| ¬q → p.............................................CP 7-9
11| ¬¬q v p.............................................MI 10
12| q v p...................................................DN 11
13| p v q...................................................Comm 12
14 [¬[q∧ ( p → ¬ q ) ] → p]→( p ⋁ q )....CP 1-13
There's half the answer -- we've proven that one implies the other. If you'd like to complete the biconditional and prove that one is equivalent to the other, please contact me via Wyzant messenger. Thanks!