Jeffrey K. answered 08/12/20
Together, we build an iron base in mathematics and physics
Ralph, let's do this one!
The basic formula is: s = vt where s = distance travelled, v = speed, and t = time
Let Trent's speed without wind be v. Let the time against the wind be t.
Flying against the wind, we have: 5589 = (v - 6) t . . . . . . . . . . Eqn (1)
Flying with the wind: 5589 = (v + 6) (t - 12) . . . . . Eqn (2)
From Eqn (1): 5589 / (v - 6) = t . . . . . . . . . . . . . . . .Eqn(3)
From Eqn (2): 5589 / (v + 6) = t - 12 . . . . . . . . . . . . Eqn (4)
Eqn (3) - Eqn (4): 5589 / (v - 6) - 5589 / (v + 6) = 12
5589 { 1 / (v - 6) - 1 / (v + 6) } = 12
5589 { (v + 6) - (v - 6) } / (v - 6)(v + 6) = 12
5589 ( 12 / (v2 - 62) ) = 12 . . . . . . . . (v - 6)(v + 6) = v2 - 6 - diff of 2 squares
5589 / (v2 - 62) = 1
5589 = v2 - 36 . . . . . . cross multiplying
5625 = v2
∴ v = √ 5625 = 75 mph
Easy problem, messy equations to solve!