Since tanα = -21/20, we'll use the Pythagorean Theorem to find the length of the hypotenuse and then find sinα and cosα
a2 + b2 = c2
212 + 202 = c2
441 + 400 = c2
841 = c2
29 = c
α is in Quadrant II so sinα = 21/29 and cosα = -20/29
Since cotß = 12/5, we'll use the Pythagorean Theorem to find the length of the hypotenuse and then find sinß and cosß
a2 + b2 = c2
52 + 122 = c2
25 + 144 = c2
169 = c2
13 = c
ß is in Quadrant III so tanß= 5/12, sinß = -5/13 and cosß = -12/13
Now we can use the Sum and Difference formulas for sine, cosine, and tangent to complete the problem
sin(α + ß) = sin(α)cos(ß) + cos(α)sin(ß)
sin(α + ß) = (21/29)(-12/13) + (-20/29)(-5/13)
sin(α + ß) = -152/377
cos(α + ß) = cos(α)cos(ß) - sin(α)sin(ß)
cos(α + ß) = (-20/29)(-12/13) - (21/29)(-5/13)
cos(α + ß) = 345/377
tan(α + ß) = [tan(α) + tan(ß)] / [1 - tan(α)tan(ß)]
tan(α + ß) = [(-21/20) + (5/12)] / [1 - (-21/20)(5/12)]
tan(α + ß) = -152/345
sin(α - ß) = sin(α)cos(ß) - cos(α)sin(ß)
sin(α - ß) = (21/29)(-12/13) - (-20/29)(-5/13)
sin(α - ß) = -352/377
cos(α - ß) = cos(α)cos(ß) + sin(α)sin(ß)
cos(α - ß) = (-20/29)(-12/13) + (21/29)(-5/13)
cos(α - ß) = 135/377
tan(α - ß) = [tan(α) - tan(ß)] / [1 + tan(α)tan(ß)]
tan(α - ß) = [(-21/20) - (5/12)] / [1 + (-21/20)(5/12)]
tan(α - ß) = -352/135
Alex L.
I just don't understand since my teacher didn't really teach us this material well enough05/21/20