
John M. answered 03/31/20
Math Teacher/Tutor/Engineer - Your Home, Library, MainStreet or Online
(1 + i√3)4
(r(cosθ+isinθ))n=rn(cos(nθ)+isin(nθ)).
= 1 + 4 sqrt(3) i + 18 i^2 + 12 sqrt(3) i^3 + 9 i^4
Now let 1−√3i=r(cosθ+isinθ)
rcosθ=1 and rsinθ=−√3
hence squaring and adding r2=(12+(−√3)2)=1+3=4
and r=2, cosθ=12 and sinθ=−√32
hence, θ=−π3
And 1−√3i=2(cos(−π3)+isin(−π3)) and using DeMoivre's theorem
(1−√3i)3=23(cos(−3π3)+isin(−3π3))
= 23(cos(−π)+isin(−π))
= 8(−1+i⋅0)
= −8