Torque On A Current Loop is given by (Number Of Turns Of Loop)×(Current Through Loop)×(Area Enclosed By Loop)×(Magnetic Field Strength)×(Sine Of Angle Formed By Magnetic Field Direction And A Vector Perpendicular To The Plane Of The Loop).
From τ = NIABsin θ, write τ = (1 Turn)×(100 Amperes)×(π(0.1 Meter)2)×(0.324 Tesla)×(sin θ).
Then write:
A. τ = (1 Turn)×(100 Amperes)×(π(0.1 Meter)2)×(0.324 Tesla)×(sin 30°) or 0.5089380099 Joule.
B. τ = (1 Turn)×(100 Amperes)×(π(0.1 Meter)2)×(0.324 Tesla)×(sin 10°) or 0.1767523159 Joule.
C. τ = (1 Turn)×(100 Amperes)×(π(0.1 Meter)2)×(0.324 Tesla)×(sin 50°) or 0.7797382687 Joule.
Final answers are in Proper Decimal Fractions of a Joule because Amperes×Meter2×Tesla amounts to
Amperes×Meter2×Newton Per (Ampere•Meter) or "Newton•Meter" or "Joule", reflecting a Force acting through a Distance and showing Kinetic Energy or performing Work.