
Mark H. answered 12/04/19
Tutoring in Math and Science at all levels
We first need to get this into the standard form for a hyperbola:
x2 / a2 − y2 / b2=1 (Assumes a "horizontal" hyperbola, with the transverse axis parallel to the x-axis)
To do this, we will "complete the square" for the x and y terms:
x2 − 24y2 − 12x + 96y − 96 = 0
Rearrange:
x2 − 12x __________− 24*(y2 - 4y __________) = 96
Add constants to create perfect squares:
x2 − 12x + 36 − 24*(y2 - 4y + 4) = 96 +36 - 24(4) = 36
Put into the standard format:
(x - 6)2 - 24*(y - 2)2 = 36
(x - 6)2 / 36 - (y - 2)2 / 1.5 = 1
The offsets tell us that the center is at (+6,-2). Use the hyperbola definitions to find the other parameters