
Patrick B. answered 08/07/19
Math and computer tutor/teacher
p={+-1, +-2, +-5, +-10}
q={+-1, +-2}
p/q = {+-1, +-2, +-5, +-10,+-5/2}
P(-1) = 2 - (-1) - 10 - 3 + 10
= 3 - 10 -3 + 10
= 0
P(2) = 32 - 8 - 40 + 6 + 10
= 24 - 40 + 6 + 10
= -16 + 16
= 0
So -1 and 2 are rational, in fact integer, solutions
The factors are (x+1)(x-2) = x^2 - x- 2
Dividing
2x^2 + x - 5
____________________________
x^2 - x - 2 | 2x^4 - x^3 - 10x^2 + 3x + 10
2x^4 - 2x^3 - 4x^2
-------------------------------------------
x^3 - 6x^2 + 3x
x^3 - x^2 - 2x
--------------------------------------
-5x^2 + 5x + 10
Optionally you can do synthetic division twice:
-1 | 2 -1 - 10 3 10
-2 3 7 -10
__________________________________
2 -3 -7 10 0
2 | 2 -3 -7 10
4 2 -10
____________________
2 1 -5 0
2x^2 +x - 5 =0
the other two solutions per quadratic formula are:
[-1 +or- sqrt ( 1 - 4*2*-5)] / 4 =
[-1 +or- sqrt( 41)]/4 =
which are APPROXIMATELY x=1.350781593582121716220544186555...
and x=-1.8507810593582121716220544186555
The complete solution set is {-1,2, (-1 +or- sqrt(41))/4 }