0

# i have a picture of a angry bird wanting to shoot so how am i going to find the equation whichh is a curved line?

This is what i am supposed to do:

-introduce the angry bird level that you are using

-picture of level with the best possible opening shots graphed in geogebra

-explanation of why this is the best opening shot

-general form of the quadratic equation that models the best shot

-show how to convert the general form in to factored form

-show how to convert the general form into vertex form

-explain and draw connecvtions between each form and the graph

To begin you off, you should know that the highest angle that will yield the greatest distance is 45 degrees.

I am not sure the max level of math knowledge you currently have but if high enough, I could help you explain this in calculus terms.

owk i am a student in juniour year and talen algerbra 2 that is my knowledge so far.

is this physics?

the main point of my question is quadratic equation and we were told to find a general form of the quadratic equation  that models the best shot.

In that case, you need to know the velocity of the object (bird) and measure the height above the ground that the bird will be flown from from geogebra. I will give more advice once you have this information.

### 1 Answer by Expert Tutors

Rizul N. | UNC-CH Grad For Math and Science TutorUNC-CH Grad For Math and Science Tutor
4.8 4.8 (12 lesson ratings) (12)
1

To get you started:

Step 1: if you have the quadratic eqn y=ax2+bx+c  .....What are the variable x and y technically here?

Step 2: Determine what your velocity (m/s unit) is. This will be your "bx" value.

Determine what your speed (m/s2 unit) is. This will be your "ax2" value.

Note: Due to gravity, your speed will be reduced to half the original value. Since your bird will be pulled downwards, your speed will also be negative.

Find out what the constant of gravity is and essentially half it to obtain your "a" value.

Step 3: Determine what the height above ground is. This will be the "c" value.

Hence once you have followed these steps, you have your coefficients in front of each of the quadratic equation terms.