Andy C. answered 05/05/18
Tutor
4.9
(27)
Math/Physics Tutor
i is the square root of -1
i^2 = -1
---------------------------------------
X+Y = 3 and XY=5
X(3-x)=5
3x - x^2 - 5 = 0
x^2 - 3x + 5 = 0
[3 +or- sqrt( 9 - 20) ]/2
[ 3 +or- sqrt(-11)]/2
[3 +or- i*sqrt(11) ]/2
[ 3+ i*sqrt(11)]/2 * y = 5
y = 10/[3 + i*Sqrt(11)]
= 10 [ 3 - i*Sqrt(11)]/ 20
= [ 3 - i*Sqrt(11)]/2
CHECK:
[ 3 + i*Sqrt(11)]/2 * [3 - i*Sqrt(11)]/2
[ 9 + 11]/4 = 20/4 = 5
and the total is 3 because i*sqrt(11) cancels out
-----------------------------------------------------
the second problem is done similarly.
the equations are X+Y = 6 and XY = 15
Then Y = 6 - x upon solving the first equation for y.
Next you substitute that into the second equation:
X(6-x)=15
6x - x^2 - 15 = 0
x^2 - 6x + 15 = 0
x = [ 6 +or- sqrt(36 - 60)]/2
= [ 6 +or- sqrt(-24)]/2
= [ 6 +or- 2i*Sqrt(6)]/2
= [ 3 +or- i*Sqrt(6)] <--- reduces by a factor of 2
Y = 15/[3 + i*Sqrt(6)] = 15 [ 3 - i*Sqrt(6)]/ [ 9 + 6] = 3 - i*sqrt(6)
--------------------------------------------------------------------------------