Bobosharif S. answered 02/27/18
Tutor
4.4
(32)
Mathematics/Statistics Tutor
inverse sin is arcsin or sin-1, inverse of cos arccos or cos-1
cos[arcsin(-4/5)-arcscos(4/5)]=
=cos[arcsin(-4/5)]cos[arcscos(4/5)]+sin[arcsin(-4/5)]sin[arcscos(4/5)]=
|cos[arccos(x)]= x, cos[arcsin(x)=√(1-x2)|
|sin[arcsin(x)] = x, sin[arccos(x)=√(1-x2)|
=√(1-(-4/5)2*(4/5)+(-4/5)*(√(1-(4/5)2)=
=(3/5)*(4/5)-(4/5)*(3/5)=0.
Note: Don't forget about range and domain for inverse functions.