Steven A. answered 01/27/18
Tutor
5.0
(1,244)
Experienced Tutor Specializing in Mathematics and Statistics
Without loss of generality, assume that C is a 3x3 matrix characterized by the elements C(i,j) for row i and column j. The determinant of a 3x3 matrix can be manually calculated as:
det(C) = C(1,1)C(2,2)C(3,3) - C(1,1)C(2,3)C(3,2) - C(2,1)C(1,2)C(3,3) + C(2,1)C(1,3)C(3,2) + C(3,1)C(1,2)C(2,3) - C(3,1)C(1,3)C(2,2)
Using the same process and simplifying the results, the determinants of C+xA and C-xA can be calculated as follows:
det(C+xA) = det(C) + Dx
det(C-xA) = det(C) - Dx
where D = C(1,1)C(3,3)+C(1,1)C(2,2)-C(1,1)C(2,3)-C(1,1)C(3,2)+C(2,1)C(1,3)+C(2,1)C(3,2)-C(2,1)C(1,2)-C(2,1)C(3,3)+C(3,1)C(1,2)+C(3,1)C(2,3)-C(3,1)C(1,3)-C(3,1)C(2,2)+C(1,2)C(2,3)-C(1,2)C(3,3)-C(1,3)C(2,2)+C(1,3)C(3,2)+C(2,2)C(3,3)-C(2,3)C(3,2)
Then det(C+xA)det(C-xA) = (det(c)+Dx)*(det(c)-Dx) = det(C)2 - (Dx)2. Since (Dx)2 >= 0 for all real numbers x, then det(C+xA)det(C-xA) <= (det(C))2 for any 3x3 matrix C and any real number x.
Martin S.
01/27/18