Log x + log (x+15) = 2

How is this solved?

Log x + log (x+15) = 2

How is this solved?

Tutors, please sign in to answer this question.

North Providence, RI

I use two rules which you should memorize.

First, if A and B are numbers greater than zero, then log A + log B = log AB.

This rule combines two logs into one.

Second, if log X = Y, then by definition, 10^{Y} = X

This rule changes a log equation into an exponential equation.

So starting with log X + log (X + 15) = 2, we use the first rule to get

log [X(X + 15)] = 2

using the second rule, we get

10^{2} = X(X + 15)

Now we can solve for X

X^{2} + 15X - 100 = 0

(X - 5) (X + 20) = 0

Therefore X = 5 or X = -20

The answer X = -20 is eliminated because if we use it in the original equation we get log (-20) which is undefined because the domain of the log function is X > 0.

So we have one answer X = 5

Cedar Park, TX

The **composite** of a **function** and **its inverse**
is just the *original argume*nt (argument means input) and so your problem is solved by understanding that the
**inverse of a log function is the exponential function** with the same base. The base of the
**common log** is 10 *(log X means log*_{10}x) therefore it's
**inverse** is **10**^{x}.

In summary:

We therefore solve the problem as follows:

log x + log (x+15) = 2

log [x(x+15)] = 2 *(the sum of two common logs is the common log of the product of their arguments)*

10^{{log [x(x+15)]}} = 10^{2 }*(since left and right side of equation are equal we plug each into the 10*^{x} function)

x(x+15) = 100

x^2 + 15x = 100

x^2 + 15x - 100 = 0 *(factor the quadratic)*

(x+20) (x-5) = 0

so

x = -20 or x = 5

since the log function doesn't exist for negative numbers *(log -20 doesn't exist*) the answer is x = 5.

Yara E.

Math Tutor With Previous Tutoring Experience

New York, NY

4.8
(18 ratings)

Kevin C.

English Professor for All Sections of SAT and ACT

Sunnyside, NY

4.6
(20 ratings)

Eli C.

SAT/ACT, Math, Science, English, Latin Tutor

New York, NY

4.9
(11 ratings)

- Algebra 1 2882
- Math 6431
- Algebra 3513
- Math Help 3777
- Precalculus 1125
- Geometry 1289
- Trigonometry 1048
- Algebra Help 846
- Algebra 2 Question 412
- Prealgebra 133

Find a tutor fast. Get the app.

Are you a tutor? Get the app for tutors

© 2005 - 2016 WyzAnt, Inc. - All Rights Reserved