Debz A.

asked • 11/30/17

Sets of operation (Checking)

Hello! I just wanted to see if my answer is correct. Would someone please check this..Thanks in advance😀

Universal/Union = { a,b,c,d,e,f,g,h}

A = {a,b,c,d}             A' = {e,f,g,h}

B = {e,f,g,h}.             B' = {a,b,c,d}

C = {a,d,h}                C' = {b,c,e,f,g}

D = {c,d,f,g}              D' = {a,b,e,h}

E = {a,b,c,f,g,h}         E' = {d,e}

Sets:

1.)[ [ [(A' ∩ B')' ∩ (C' ∩ D')']' - [(B-D')'- (A-C')']' ]' - E ]'

2.) [ [ [ [ (A' - B')' -C' ]' - D' ]' - E' ]' ∩ [ ( A' ∪ B')' ∩ (E' ∩ D')' ]' ]' ∩ ( B' '- C' ')' '

3.)[ B' ∩ [ (B' ∪ C')' - ( D' ∩ D) ] ' ]' ∩ [( E ∪ E')' ∩ (C' - E)']'
 
Answer no. 1
 A' ∩ B' = { }
(A' ∩ B')' = {a,b,c,d,e,f,g,h}
 C' ∩ D' = {b,c}
(C' ∩ D')' = {a,d,e,f,g,h}
(A' ∩ B')' ∩ (C' ∩ D')'= {a,c,d,f,g,h}
[(A' ∩ B')' ∩ (C' ∩ D')']' = { b,e}
 
B - D' = {f,g}
(B - D')' = {a,b,c,d,e,h}
A - C' = {a,d}
(A' - C')' = {b,c,e,f,g,h}
 
( B - D')' - (A - C')' = {a,d}
[(B - D')' - (A - C')']' = {b,c,e,f,g,h}
 
[( A' ∩ B')' ∩ (C' ∩ D')']' - [( B - D')' - (A - C')']' = { }
[[ (A' ∩ B')' ∩ (C' ∩ D')']' - [( B - D')' - (A - C')']']' = {a,b,c,d,e,f,g,h}
[[ (A' ∩ B')' ∩ (C' ∩ D')']' - [( B - D')' - (A - C')']']' - E = { e,d}
 
Final Answer:
[ [[ (A' ∩ B')' ∩ (C' ∩ D')']' - [( B - D')' - (A - C')']']' - E ]' = {a,b,c,f,g,h}
 
Answer no. 2 
A' - B' = {e,f,g,h}
(A' - B')' = {a,b,c,d}
 (A' - B')' - C' = {a,d}
[(A' - B')' - C']' = {b,c,e,f,g,h}
[(A' - B')' - C']' - D' = {c,f,g}
[ [(A' - B')' - C']' - D' ]' = {a,b,d,e,h}
[ [(A' - B')' - C']' - D' ]' - E' = {a,b,h}
[ [ [(A' - B')' - C']' - D' ]' - E' ]' = {c,d,e,f,g}
 
A' ∪ B' = {a,b,c,d,e,f,g,h}
(A' ∪ B')' = { }
E' ∩  D' = {e}
(E' ∩ D')' = { a,b,c,d,f,g,h}
(A' ∪ B')' ∩ (E' ∩ D')' = { }
[(A' ∪ B')' ∩ (E' ∩ D')']' = {a,b,c,d,e,f,g,h}
 
[ [ [(A' - B')' - C']' - D' ]' - E' ]' ∩ [(A' ∪ B')' ∩ (E' ∩ D')']' = {c,d,e,f,g}
 
[ [ [ [(A' - B')' - C']' - D' ]' - E' ]' ∩ [(A' ∪ B')' ∩ (E' ∩ D')']' ] ' = {a,b,h}
 
*I cancel out  B' ' - C ' ' 
(B - C)' = {a,b,c,d,h}
[(B - C)']' = {e,f,g}
 
Final Answer:
[ [ [ [(A' - B')' - C']' - D' ]' - E' ]' ∩ [(A' ∪ B')' ∩ (E' ∩ D')']' ] ' ∩ [(B - C)']' = { } 
 
Answer no. 3 
B' ∪ C' = {a,b,c,d,e,f,g}
(B' ∪ C')' = {h}
D' ∩ D = { }
(D' ∩ D)' = {a,b,c,d,e,f,g,h}
 
(B' ∪ C')' - (D' ∩ D)' = { }
[(B' ∪ C')' - (D' ∩ D)']' ={ a,b,c,d,e,f,g,h}
B' ∩ [(B' ∪ C')' - (D' ∩ D)']' = {a,b,c,d}
[ B' ∩ [(B' ∪ C')' - (D' ∩ D)']' ]' ={e,f,g,h}
 
E ∪ E' = {a,b,c,d,e,f,g,h}
(E ∪ E')' = { }
C' - E = {e}
(C' - E)' = {a,b,c,d,f,g,h}
(E ∪ E')' ∩ (C' - E)' = { }
[ (E ∪ E')' ∩ (C' - E)' ] ' = {a,b,c,d,e,f,g,h}
 
Final Answer:
[ B' ∩ [(B' ∪ C')' - (D' ∩ D)']' ]' ∩ [ (E ∪ E')' ∩ (C' - E)' ] ' = { e,f,g,h}
 

1 Expert Answer

By:

Andrew M. answered • 11/30/17

Tutor
New to Wyzant

Mathematics - Algebra a Specialty / F.I.T. Grad - B.S. w/Honors

Still looking for help? Get the right answer, fast.

Ask a question for free

Get a free answer to a quick problem.
Most questions answered within 4 hours.

OR

Find an Online Tutor Now

Choose an expert and meet online. No packages or subscriptions, pay only for the time you need.