
Andrew M. answered 11/30/17
Tutor
New to Wyzant
Mathematics - Algebra a Specialty / F.I.T. Grad - B.S. w/Honors
Universal = { a,b,c,d,e,f,g,h}
A = {a,b,c,d} A' = {e,f,g,h}
B = {e,f,g,h}. B' = {a,b,c,d}
B = {e,f,g,h}. B' = {a,b,c,d}
C = {a,d,h} C' = {b,c,e,f,g}
D = {c,d,f,g} D' = {a,b,e,h}
E = {a,b,c,f,g,h} E' = {d,e}
D = {c,d,f,g} D' = {a,b,e,h}
E = {a,b,c,f,g,h} E' = {d,e}
1.)[ [ [(A' ∩ B')' ∩ (C' ∩ D')']' - [(B-D')'- (A-C')']' ]' - E ]'
A'∩B' = {}
(A' ∩ B')' = {a,b,c,d,e,f,g,h}
C'∩D' = {b,e} you made a small error here listing {b,c}
(C' ∩ D')' = {a,c,d,f,g,h}
(A' ∩ B')' ∩ (C' ∩ D')' = {a,c,d,f,g,h}
[(A' ∩ B')' ∩ (C' ∩ D')']' = {b,e}
(B-D') = {f,g}
(B - D')' = {a,b,c,d,e,h}
A - C' = {a,d}
(A-C')' = {b,c,e,f,g,h}
( B - D')' - (A - C')' = {a,d}
[( B - D')' - (A - C')']' = {b,c,e,f,g,h}
[ [(A' ∩ B')' ∩ (C' ∩ D')']' - [(B-D')'- (A-C')']] = {b,e}-{b,c,e,f,g,h} = {}
[[ (A' ∩ B')' ∩ (C' ∩ D')']' - [( B - D')' - (A - C')']']' = {a,b,c,d,e,f,g,h}
[[ (A' ∩ B')' ∩ (C' ∩ D')']' - [( B - D')' - (A - C')']']' - E = {d,e}
[ [ [(A' ∩ B')' ∩ (C' ∩ D')']' - [(B-D')'- (A-C')']' ]' - E ]' = {a,b,c,f,g,h}
Your minor error noted above did not effect the final answer.
It is apparent that you are familiar with how to work these so I will
leave you to check the other two. Have fun and best of luck.