Andy C. answered 07/24/17
Tutor
4.9
(27)
Math/Physics Tutor
It is binomial distribution with p=0.2, n=50, k = 0,1,2,3,...7
The formula is SUM [ (n choose k) p^k (1-p)^(n-k) ] for k=0,1,2,3,4,5,6,7
where N choose k = n!/(k! * (n-k)!)
SUM [ ( 50 choose k) (0.2)^k (0.8) ^ (50-k) ] for k=0,1,2,3,4,5,6,7
The result is just over 19% per the following table, per MS Excel
k 50 choose k (0.2)^k (0.8)^(50-k) Probability
0 1 1 1.42725E-05 1.42725E-05
1 50 0.2 1.78406E-05 0.000178406
2 1225 0.04 2.23007E-05 0.001092737
3 19600 0.008 2.78759E-05 0.004370946
4 230300 0.0016 3.48449E-05 0.012839654
5 2118760 0.00032 4.35561E-05 0.029531204
6 15890700 0.000064 5.44452E-05 0.055371008
7 99884400 0.0000128 6.80565E-05 0.087011584
TOTAL 0.190409812
0 1 1 1.42725E-05 1.42725E-05
1 50 0.2 1.78406E-05 0.000178406
2 1225 0.04 2.23007E-05 0.001092737
3 19600 0.008 2.78759E-05 0.004370946
4 230300 0.0016 3.48449E-05 0.012839654
5 2118760 0.00032 4.35561E-05 0.029531204
6 15890700 0.000064 5.44452E-05 0.055371008
7 99884400 0.0000128 6.80565E-05 0.087011584
TOTAL 0.190409812