The three bullets above need to be written as trigonometric identities.
1) We express all functions as ratios of sinA, cosA, sinB and cosB:
(Cot a+ Csc B)/(tan a+ sinB)
= (cosA/sinA + 1/sinB)/(sinA/cosA + sinB)
2) we use common denominators in the numerator and the denominator to simplify.
Numerator:
cosA/sinA + 1/sinB
=cosA•sinB/(sinA•sinB) + sinA/(sinA•sinB)
=(cosA•sinB + sinA)/(sinA•sinB).
Denominator:
sinA/cosA + sinB
=sinA/cosA +sinB•cosA/cosA
=(sinA +cosA•sinB)/cosA.
3. Now, we simplify by dividing the Numerator and the Denominator from previous step. We use the fact that dividing by fraction is actually multiplying by the reciprocal of the fraction. Computations:
Numerator/Denominator
=[(cosA•sinB + sinA)/(sinA•sinB)] /
[(sinA +cosA•sinB)/cosA]
=[(cosA•sinB + sinA)/(sinA•sinB)] •
[cosA/(sinA +cosA•sinB)]
=[(cosA•sinB + sinA) • cosA] /
[(sinA•sinB•(cosA•sinB +sinA)]
We rearrange now to get
=[cosA/sinA] • [1/sinB] •[(cosA•sinB + sinA)/(cosA•sinB + sinA)]
= [cotA] • [cscB] • [1]
= cotA • cscB.