Prove that
(cos(x) + i sin(x))n = cos(nx) + i sin(nx),
where i =√-1.
The inductive proof has two steps.
Step 1.
n=1:
cos(x) + i sin(x) = (cos(x) + i sin(x))1 = cos(1x) + i sin(1x) = cos(x) + i sin(x)
So the general statement for the proposition is true for n = 1.
Step 2.
Let the proposition is true for some natural number k>=1:
(cos(x) + i sin(x))k= cos(kx) + i sin(kx)
We will prove that
(cos(x) + i sin(x))k+1 = cos((k+1)x) + i sin((k+1)x.
Proof:
(cos(x) + i sin(x))k+1 =(cos(x) +i sin(x))k(cos(x) + i sin(x)) (1)
=(cos(kx) +i sin(kx))(cos(x) + i sin(x)) (2)
= cos(kx) cos(x) + i(sin(kx)cos(x)) +i(cos(kx)sin(x)) + i2(sin(kx)sin(x)) (3)
= cos(kx) cos(x) - sin(kx)sin(x) + i[sin(kx)cos(x) +sin(x)cos(kx)] (4)
=cos((kx +x) + i sin(kx+x) (5)
=cos((k+1)x) + i sin((k+1)x) (6)
We used these facts:
- when we multiply binomial by binomial we multiply each of the addends in the first parenthesis by each term in second parenthesis (2),
- we combined like terms (3)
- We used the fact that i2=-1, (4)
- We used the formula for cosine of sum of angles and sine of sum of angles (5)
- We simplified (kx+x) to look as in the proposition.(6)