Hailey H.

asked • 05/12/17

simplify the difference quotients

f(x+h)-f(x)/h and f(x)-f(a)/x-a   for the following function by rationalizing the numerator.
 
f(x)=sqr rt of x^2-8

Michael A.

tutor
The numerator will be √(x + h)² - 8 - √x² - 8
 
To rationalize the numerator, multiply by its conjugate, which is:
 
√(x + h)² - 8 + √x² - 8
 
Once you do this, the radical sign will disappear. From there, simply combine like terms and simplify. 
Report

05/12/17

Hailey H.

I'm still super lost sorry
Report

05/12/17

1 Expert Answer

By:

Michael J. answered • 05/12/17

Tutor
5 (5)

Mastery of Limits, Derivatives, and Integration Techniques

Michael J.

If you set h=0 and simplify even further, you get an expression that is the derivative of f(x).  You would end up with
 
2x / 2√(x2 - 8) =
 
x / √(x2 - 8)  ----> derivative of √(x2 - 8)
Report

05/12/17

Hailey H.

what about for the second quotient, f(x)-f(a)/x-a
Report

05/12/17

Michael J.

Overall, the formula I used here is the same as the formula you provided here.
 
f(x + h) - f(x)              f(x) - f(a)
____________   =    ___________
           h                        x - a
 
 
                         = f(x + h) - f(x)
                           ___________
                               (x + h) - x
            
 
                       = f(x + h) - f(x)
                         ____________
                                     h
Report

05/12/17

Michael J.

f(x) - f(a)
________  =
   x - a
 
 
√(x2 - 8) - √(a2 - 8)
_________________  =
         x - a
 
 
x2 - 8 - (a2 - 8)
__________________________  =
 (x - a)[√(x2 - 8) + √(a2 - 8)]
 
 
(x - a)(x + a)
__________________________  =
 (x - a)[√(x2 - 8) + √(a2 - 8)]
 
 
 
             x + a
_____________________ =
    √(x2 - 8) + √(a2 - 8)
Report

05/13/17

Still looking for help? Get the right answer, fast.

Ask a question for free

Get a free answer to a quick problem.
Most questions answered within 4 hours.

OR

Find an Online Tutor Now

Choose an expert and meet online. No packages or subscriptions, pay only for the time you need.