Raymond B. answered 29d
Math, microeconomics or criminal justice
h(t) = -16t^2 +528t- 1440
h(0) = -1440 feet= 1,440 below sea level, = initial height at time t=0
h(5)= -16(5^2) + 528(5) -1440 = -400 + 2640 -1440 = -400 + 1200 = 800 feet high after 5 seconds
h(15) = -16(225) + 528(15) -1440 = 3600 + 7920 -1440 = 3600 + 6480 = 10,080 feet high in 15 seconds
h(25) = -16(25)^2 + 528(25) -1440 = -16(625) + 13,200 -1440 = 23,200 -1440 = 21,760 ft high in 25 seconds
h(35) = -16(35)^2 + 528(35) -1440 = -16(1225) + 18,480 - 1,440 = -19,600 + 17,040 = - 2,560 ft in 35 seconds. It's falling back down into the water
h(t) = -16t^2 +528t -1440 = -16(t^2 - 33t + (33/2)^2) -1440 + (33/2)^2
= -16(t- 33/2)^2 - 1440 + 1089/4
= -16(t - 16.5)^2 - 4671/4
= -16(t- 16.5)^2 - 1167.75 is vertex form with vertex = maximum point (h,k) = (16.5 sec, 1167.75 ft)
maximum height = 1,167 3/4 ft after 16.5 seconds
after 16 1/2 seconds, it begins to fall back to the water
from t= 0 to 16 1/2 it's rising higher
h(t) =0 = -16(t - 16.5)^2 =- 1167.75
-16(t-16.5)^2 =
(t-16.5)^2 = 1167.75/64
t-16.5 = +/-(sqr1167.75)/2
t = 16.5 +/- (sqr1167.75)/2 = when the missile leaves the water and re-enters the water
= about 16.5 +/-17.086
= - 0.586 and 33.586 seconds