Steve S. answered 02/08/14
Tutor
5
(3)
Tutoring in Precalculus, Trig, and Differential Calculus
x + x - 3 + 4^2 + 2x - x =
x - x + x + 2x + 4^2 - 3 =
3x + 16 - 3 =
3x + 13
20 + 3xy - 3 + 4y^2 + 10 - 2y^2 =
4y^2 - 2y^2 + 3xy + 20 + 10 - 3 =
2y^2 + 3xy + 27
==========
OTOH, if the first squared term was supposed to be 4x^2, then
20 + 3xy - 3 + 4x^2 + 10 - 2y^2 =
4x^2 + 3xy - 2y^2 + 27
20 + 3xy - 3 + 4x^2 + 10 - 2y^2 =
4x^2 + 3xy - 2y^2 + 27
If this expression is set to 0,
then the equation describes a rotated hyperbola. GeoGebra can be used to find the angle of rotation; see http://www.wyzant.com/resources/files/259766/rotated_hyperbola