Hi Juan!
1) Faraday's law, which governs this kind of electromagnetic induction, depends directly on the number of turns in the coil (assuming close packing of the coils). So, all else being equal, the induced voltage increases in direct proportion with the number of coils. So we can say:
51 Volts = n Volts
---------- --------
26.3 turns 445.5 turns
and solve for the new induced emf (voltage)
2) I think that what they are going for here is the magnetic field a certain distance from the (supposedly) single wire that is supplying the electricity to the lamp. If we model this as a long, straight wire, then the magnetic field a certain radial distance away is given by:
B = μoi/(2πr)
What you have to do with the given information is determine the current running in the wire. That you can get from V = iR, with the voltage of the power supply V and the resistance R of the bulb given.
4) Is done the same way as 2), using that expression for the magnetic field from a long straight wire. Just make sure to convert your length units to meters.
3) is a little trickier. To get the magnetic field, rather than the induced emf, we have to know something about the magnitude of the induced current, because we have to go from induced emf (voltage) to current through V = iR (as in some of the other problems). Without that information, I am not sure how to calculate the induced field's magnitude. Is there any other information for this problem? I will also think about it more and see if anything else occurs to me.
Hope this helps some! Let me know if you have more information or other questions.
Steven W.
11/03/16